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Abstract

The direct numerical simulation (DNS) of turbulent heat transfer in a channel ¯ow has been carried out to investigate the

Reynolds and Prandtl number e�ects on the turbulent heat transport. The con®guration is a fully developed turbulent channel ¯ow

with uniform heating from both walls. The Reynolds numbers based on the friction velocity and the channel half width are 180 and

395, and the molecular Prandtl numbers are 0.025, 0.2 and 0.71. The statistical quantities such as the temperature variance, tur-

bulent heat ¯uxes, turbulent Prandtl number and the time scale ratio are obtained and the e�ects of the Reynolds and Prandtl

numbers are examined. Budget terms of the temperature variance and the turbulent heat ¯uxes are also calculated. In addition, the

instantaneous ¯ow and thermal ®elds are visualized in order to investigate the structures of streaks and vortices. Ó 1999 Elsevier

Science Inc. All rights reserved.
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1. Introduction

The direct numerical simulations (DNSs) of turbulent heat
transfer are now widely performed for various con®gurations.
Among them, the DNS of the fully developed turbulent
channel ¯ow has often been made because of its simple ge-
ometry and fundamental nature to understand the convective
heat transfer between ¯uid and a solid wall. The ®rst attempt
on this subject was made by Kim and Moin (1989) for Pr� 0.1,
0.71 and 2.0 with Res � 180, where Pr is the Prandtl number
and Res is the Reynolds number based on the friction velocity
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Notation

at thermal eddy-di�usivity
bi,ci,di coe�cient of expansion
cp speci®c heat at constant pressure
k turbulent kinetic energy
p pressure
Pes Peclet number�Pr �Res

Pr molecular Prandtl number
Prt turbulent Prandtl number
Ph production term of temperature variance
qw wall heat ¯ux
qtotal total heat ¯ux
R time constant ratio
R/w cross-correlation coe�cient � /w=/rmswrms

Res Reynolds number� usd=m
Rem Reynolds number� u�h i 2d=m
t time
T temperature
Tm bulk mean temperature
Ts friction temperature � qw=qcpus

ui; u; v;w velocity component
us friction velocity� ����������

sw=q
p

x1; x streamwise direction
x2; y wall-normal direction
x3; z spanwise direction

Greek
d channel half width
e dissipation of turbulent energy
eh dissipation of temperature variance
jh Karman constant of mean temperature
h transformed temperature
m kinematic viscosity
mt eddy-di�usivity
q density
sw statistically averaged wall shear stress

Superscripts
� �� normalized by d
� �� normalized by us, m and Ts

� �0 ¯uctuation component

� � statistically averaged
h i averaged over channel section
� �rms root mean square
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us and the channel half width d. Later, Kasagi et al. (1992) and
Kasagi and Ohtsubo (1993) made the DNS for Pr� 0.71 and
0.025 with a slightly lower Reynolds number of Res � 150.
They obtained the budget of the transport equations for the
temperature variance, turbulent heat ¯uxes and their dissipa-
tions. Kawamura et al. (1997, 1998) performed the DNS for a
wider range of Prandtl numbers from Pr� 0.025 up to 5.0 with
Res � 180. Recently, Wikstr�om and Johansson (1998) made
the DNS with a higher Reynolds number of Res � 265 with a
di�erent thermal boundary condition of the uniform temper-
ature di�erence.

Antonia and Kim (1991) analyzed the DNS data by Kim
and Moin (1989) and obtained various turbulence quantities in
the near-wall region. Among them, they found that the tur-
bulent Prandtl number Prt tends to be a constant level irre-
spective of the molecular Prandtl number as the wall is
approached.

As seen above, most of the DNSs of the turbulent heat
transfer in the channel ¯ow have been performed for Reynolds
numbers less than Res � 180, which corresponds to Rem '
5600 based on the bulk mean velocity and the channel width.
Since this Reynolds number is rather small, the universality of
the results should be carefully examined. For example, the
logarithmic and the wake regions can hardly be distinguished
and the peaks of the turbulent heat ¯uxes are rather low.

On the other hand, not much work has been done on the
DNS of the turbulent channel ¯ow itself with a higher Rey-
nolds number than Res � 180. This is a matter of course be-
cause it requires a larger mesh number and longer
computational time. Shortly after the well-known DNS with
Res � 180 by Kim et al. (1987), the same group performed
another with a higher Res of 395 (Kim et al., 1990; Antonia
and Kim, 1994). Recently, the present author's group (Ka-
wamura, 1998) performed the DNSs with Res � 395 and 640.
In the present work, their DNS of Res � 395 is extended to
include the scalar transport with Prandtl numbers of 0.025,
0.20 and 0.71. The results are compared with those of Res �
180 (Kawamura et al., 1997 ; Kawamura et al., 1998) and the
e�ects of the Reynolds and Prandtl numbers are discussed.

2. Fundamental equations and computational method

The ¯ow is assumed to be fully developed and heated by a
uniform heat ¯ux qw from both walls. The computational
domain is shown in Fig. 1. The coordinates and ¯ow variables
are normalized by the channel half width d, the friction ve-
locity us, the kinematic viscosity m and the friction temperature
Ts�� qw=qcpus�.

The fundamental non-dimensionalized equations for the
velocity ®eld are the continuity equation:

ou�i
ox�i
� 0; �1�

and the Navier±Stokes equation:

ou�i
ot�
� u�j

ou�i
ox�j
� ÿ op�

ox�i
� 1

Res

o2u�i
ox�2j

: �2�

In this case, the statistically averaged temperature increases
linearly with respect to x�. Then the instantaneous temperature
T� x�; y�; z�� � can be divided into two parts

T� x�; y�; z�� � � dhT�mi
dx�

x� ÿ h� x�; y�; z�� �; �3�
where hT�mi is the so-called mixed mean temperature de®ned as

hT�mi �
Z1

0

u�1 T
�

dy�
Z1

0

u�1 dy�
,

: �4�

In the present con®guration, its streamwise gradient becomes

dhT�mi
dx�

� 1= u�h i; �5�
where u�h i is the velocity averaged over the channel section.
With the above transformation, the energy equation becomes

oh�

ot�
� u�j

oh�

ox�j
� 1

Res � Pr

o2h�

ox�2j
� u�1

u�h i : �6�

The boundary conditions are

u�i � 0; h� � 0 at y � 0 and 2 d: �7�
The simulation is made with the use of the ®nite di�erence
method (see Table 1) in which special attention is paid to the
consistency between the analytical and numerical di�erential
operations (Kawamura, 1995). The method was con®rmed to
give good agreements with the spectral method (Kawamura
and Kondoh, 1996). The present numerical scheme consistent
with the analytical operation ensures the balance of the
transport equations for the statistical correlations such as the
turbulent heat ¯ux and the temperature variance. To perform a
DNS with a higher Reynolds number, a larger grid number of
256� 128� 256 is adopted. The calculation is carried out with
the use of a parallel computer, called Numerical Wind Tunnel
(NWT) located at National Aerospace Laboratory.

The computational and visualized conditions are given in
Table 1.

Fig. 1. Computational domain.

Table 1

Computational and visualized conditions

Grid Staggered grid

Coupling algorithm Fractional step method

Time advancement

Viscous term (y-direction) 2nd-order Crank±Nicolson Method

Others 2nd-order Adams±Bashforth Method

Discretization scheme

Nonlinear terms 2nd-order central scheme (Consistent)

Viscous terms 2nd-order central scheme

Boundary condition Periodic(x, z direction), Non-slip

(y-direction)

Grid number 128� 66� 128 �Res � 180�,
256� 128� 256 �395�

Computational volume 6:4d� 2d� 3:2d
Visualized volume 3:2d� d� 1:6d
Reynolds number Res � 180, 395

Prandtl number Pr� 0.025, 0.2, 0.71
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3. Results

3.1. Velocity ®eld

To examine the obtained velocity ®eld, the mean velocity
pro®le and the rms of the Reynolds normal stress are shown
and compared with those by Kim et al. (1990) in Figs. 2 and 3.
Although a small discrepancy is observed, the agreement is
good enough.

3.2. Mean temperature pro®le

The mean temperature is given for two Reynolds numbers
of 180 and 395 and for Prandtl numbers of 0.025, 0.20 and 0.71
in Fig. 4. The one by Kasagi's group (Pr� 0.025 and 0.71 for
Res � 150) is also plotted for comparison. Similar to the mean
velocity distribution, there exists the logarithmic region in the
mean temperature pro®le, too:

h
� � 1

jh
ln y� � ch; �8�

where jh is the von Karman constant of the mean temperature
pro®le. In the present calculation, the logarithmic region can
be better distinguished from the wake region with the increase
of the Reynolds and Prandtl numbers.

With the use of the present DNS data, jh can be obtained
by

1

jh
� y�

dh
�

dy�
: �9�

The resultant jh is shown in Fig. 5. In case of Res � 180, no
plateau is observed for Pr� 0.2; while for Pr� 0.71, jh exhibits
a plateau. In case of Res � 395, the plateau can be seen for
both Pr� 0.2 and 0.71. Moreover, jh decreases signi®cantly
after the plateau ends, which corresponds to the distinction
between the logarithmic and wake regions. It is interesting to
note that, in case of Res � 395, the values of jh for Pr� 0.71
and 0.2 become roughly independent of the Prandtl number
for y� > 50. This means that the semi-logarithmic plots of the
mean temperature become parallel for Pr P 0:2, which can be
con®rmed in Fig. 4.

Kader (1981) proposed jh � 0:47 independently of Pr in his
empirical correlation. The present DNS supports the inde-
pendence; however, the value of the jh itself is somewhat
smaller than his proposal and is closer to the von Karman
constant of the mean velocity pro®le ju ' 0:4 � 0:42� �.

3.3. Temperature variance

The rms of the temperature variance is shown in Fig. 6 for
various Reynolds and Prandtl numbers. When the Prandtl
number is large enough, e.g., Pr� 0.71, the peak value depends
only weakly upon the Reynolds number. For a smaller Prandtl
number, however, the peak increases as the Reynolds number
does.

The ratio h0�rms=Pr is plotted logarithmically in Fig. 7 to
emphasize the near-wall behavior. In the wall vicinity, the

Fig. 3. Rms of Reynolds normal stress (Res � 395) in comparison with

Kim et al. (1990).

Fig. 4. Mean temperature pro®les.

Fig. 5. jh of mean temperature.

Fig. 2. Mean velocity pro®le (Res � 395) in comparison with Kim et al.

(1990).
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¯uctuation of the temperature is expanded usually (Antonia
and Kim, 1991) in terms of y� as

h0� � ~bhy� � ~chy�
2 � � � � : �10�

In the previous paper (Kawamura et al., 1998), the author's
group proposed a new expansion of

h0� � Pr�bhy� � chy�
2 � � � ��: �11�

For this expansion to be valid, the expansion coe�cient bh

must be independent of Pr. To examine this point, the ratio
h0�rms=Pry� is plotted in Fig. 8. In case of Res � 180, bh is still
dependent on Pr in the whole range of the present calculation.
In case of Res � 395, however, bh becomes independent of Pr
for Pr P 0:2. Thus, the expansion of Eq. (11) can be con®rmed
to be valid if the Reynolds and Prandtl numbers are higher
than a certain limit.

3.4. Wall-normal turbulent heat ¯ux

The wall-normal turbulent heat ¯ux is plotted in Fig. 9 with
emphasis on the near-wall region. Considering the expansion
of Eq. (11) and a similar one for v0�:

v0� � c2y�2 � � � � ; �12�
the wall-normal turbulent heat ¯ux can be expressed in terms
of y� as

ÿv0 � h0� � ÿPr bhc2y�
3 � � � � : �13�

Fig. 9 indicates that the dependence of the correlation coe�-
cient bhc2 upon the Reynolds number is not large but still
appreciable; i.e. bhc2 ' 0:0008 for Res � 180 and 0.001 for 395.

Since a fully developed ¯ow is assumed, the sum of the wall-
normal turbulent and the molecular heat ¯uxes satis®es the
following relation.

1

Pr

dh
�

dy�
ÿ v0�h0� � 1ÿ

R y�

0
u�1 dy�

u�h iRes
; �14�

which is equal to the total heat ¯ux q�total. The total and the
wall-normal turbulent heat ¯uxes are shown in Fig. 10. The
peak of the turbulent heat ¯ux increases with the increase of
the Res and Pr. The peak arises at around y� � 30±60 for
Pr P 0:2, while y� > 50 for Pr� 0.025.

The peak value of the wall-normal turbulent ¯ux can be
estimated as follows. Firstly, the total heat ¯ux is expressed as

q�total �
1

Pr

dh
�

dy�
ÿ v0�h0� � 1ÿ y�

Res
� /�y��; �15�

where /�y�� is a small correction function depending on the
velocity pro®le. It can be empirically approximated as

/�y�� � b
y�

Res
1

�
ÿ y�

Res

�2

; �16�

where b is an empirical constant of about 0:4. If the logarith-
mic pro®le is assumed for the mean temperature, then its
gradient becomes

Fig. 8. Ratio of h0�rms=Pry�.

Fig. 9. Logarithmic plot of wall-normal turbulent heat ¯ux.

Fig. 6. Rms of temperature variance.

Fig. 7. Ratio of h0�rms=Pr.
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dh
�

dy�
� 1

jhy�
: �17�

With the use of Eqs. (16) and (17), Eq. (15) gives

ÿv0�h0� � 1ÿ 1

jhPry�
ÿ 1� ÿ b� y�

Res
ÿ 2b

y�

Res

� �2

� b
y�

Res

� �3

: �18�
If the last two higher order terms are neglected for simplicity,

the peak of ÿv0�h0� arises at

y�max �
��������������������������

1

1ÿ b� �
Res

jhPr

s
: �19�

Then the peak value becomes

ÿv0�h0�max ' 1ÿ 2

������������
1ÿ b
jhPes

s
ÿ 2b

1ÿ b
1

jhPes
� b

1ÿ b� �3=2

� 1

jhPes� �3=2
; �20�

where Pes � Pr �Res is the Peclet number. This correlation is
compared with the DNS results in Fig. 11, where good
agreement is obtained.

The cross-correlation coe�cient of the wall-normal turbu-
lent heat ¯ux is shown in Fig. 12, in which that of the Rey-
nolds shear stress Ruv is also plotted. The cross-correlation
coe�cient Rvh decreases with the increase of the Prandtl
number for a given Reynolds number. When the Prandtl

number becomes closer to unity, Rvh coincides well with Ruv for
both Reynolds numbers. This indicates that the smaller Rvh

compared with Ruh is caused by the lower correlation between
u0� and v0�. For a higher Reynolds number, the dependence of
Rvh upon Pr decreases, because the convective e�ect is more
enhanced.

3.5. Streamwise turbulent heat ¯ux

The streamwise turbulent heat ¯ux is given in Fig. 13. Its
peak is determined primarily by the Prandtl number and it
increases with the increase of Pr. The dependence of the peak
value on the Reynolds number is already negligible for
Pr� 0.71 but is still appreciable for Pr� 0.2 and 0.025. It is
interesting to note that, in the central region of the channel, the
streamwise heat ¯ux does not depend on the Prandtl number if
Pr P 0:2.

The cross-correlation coe�cient of the streamwise turbu-
lent heat ¯ux is shown in Fig. 14. When the Prandtl number is
smaller than 1.0, the cross-correlation coe�cient Ruh increases
with the increase of the Prandtl number for both Reynolds
numbers. On the other hand, when the Prandtl number is
larger than 1.0, Ruh decreases with the increase of Pr because
the similarity of the velocity and thermal ®elds is lost. In case
of Res � 180, the maximum value of Ruh reaches even 0:97 at
y� ' 7 with Pr� 1.0. For Res � 395, that of Ruh is 0:94 at y� ' 8
with Pr� 0.71. These high values of Ruh result from the quasi-
coherent structures, e.g., streaks. Moreover, the ¯uctuating

Fig. 10. Total and turbulent heat ¯uxes.

Fig. 11. Peak value of wall-normal turbulent heat ¯ux.

Fig. 12. Cross-correlation coe�cient of wall-normal turbulent heat

¯ux.

Fig. 13. Streamwise turbulent heat ¯ux.
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streamwise velocity (u0�) is much larger than the wall-normal
one (v0�), because the latter is bound by the wall but the former
is not. These are the reasons why the streamwise turbulent heat
¯ux is much larger than the wall-normal one.

3.6. Budgets of transport equations

The budgets of the transport equation for the temperature
variance are compared for Res � 180 and 395 in Fig. 15. The
budget terms are non-dimensionalized by the factor of u3

sTs=m.
Both the production and dissipation terms increase with the
increase of the Reynolds number. The present authors (Ka-
wamura et al., 1997 ; Kawamura et al., 1998) examined a
scaling law of the peak of the production term Ph for the
temperature variance and found that it can be scaled by Ph=Pr
and Pr1=3y�. As shown in Fig. 16, this scaling law is better
satis®ed with the increase of the Reynolds number.

The budgets for the wall-normal turbulent heat ¯ux are
shown in Figs. 17±20. These indicate that the dominating
terms increase with the increase of Reynolds number. The
Reynolds number e�ect seems to be more pronounced for a
smaller Prandtl number of 0.025. When the Prandtl number is
0.71, the production and temperature pressure-gradient cor-
relation (TPG) terms are dominant and the dissipation term is
considerably small; while, at Pr� 0.025, the production and
dissipation terms are prominent and TPG term is negligible.
This point was already well recognized and taken into account
in the modeling of the turbulent heat transport (Launder,
1976). In case of Pr� 0.2, however, both the TPG and the
dissipation terms contribute comparatively (see Fig. 19).

Comparison of Fig. 19 and Fig. 20 indicates that, with the
increase of the Reynolds number, the dissipation term stays
rather unchanged while the TPG term increases to contribute
more dominantly to the budget.

3.7. Turbulent Prandtl number and time scale ratio

The turbulent Prandtl number is an important quantity in
the engineering heat transfer calculation. It is de®ned as

Fig. 14. Cross-correlation coe�cient of streamwise turbulent heat ¯ux.

Fig. 15. Budget of temperature variance Res � 395;Pr � 0:71� �.

Fig. 16. Production term Ph for temperature variance.

Fig. 17. Budget of wall-normal turbulent heat ¯ux Res � 395;�
Pr � 0:71�.

Fig. 18. Budget of wall-normal turbulent heat ¯ux Res � 395;�
Pr � 0:025�.
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Prt � mt

at

� u0�v0�

v0�h0�
�dh

�
=dy��

�du1
�=dy�� : �21�

There has been a long discussion on the dependence of the
Prandtl number upon the wall-normal distance y� and/or the
molecular Prandtl number. Antonia and Kim (1991) found
that the turbulent Prandtl number becomes almost indepen-
dent of both y� and Pr as the wall is approached except for a
very low Prandtl number. In addition to the near-wall ex-
pansion of h0� and v0� in Eqs. (11) and (12), the mean tem-
perature and the velocity ®elds can be expanded as follows:

h
� � Pry� � � � � ; �22�

u� � y� � � � � ; �23�
u0� � b1y� � c1y�2 � � � � y�� ! 0�: �24�
Accordingly, the Reynolds shear stress can be obtained as

u0�v0� � b1c2y�3 � � � � : �25�
With the use of Eqs. (13), (22), (23) and (25), the turbulent
Prandtl number becomes

Prt � b1c2y�3Pr

Prc2bhy�3
� b1c2

c2bh

: �26�
The correlation coe�cient bhc2 may still depend upon Pr.
However the main part of the dependence upon Pr is already

extracted from bhc2 by the form of Eq. (13), the e�ect of Pr
upon bhc2 can be expected to be small. The other coe�cient of

b1c2 is independent of Pr. It depends upon the Reynolds
number only, but its dependency is rather small. Thus, one can
expect that the turbulent Prandtl number becomes almost in-
dependent of Reynolds and Prandtl numbers as the wall is
approached.

The turbulent Prandtl number is plotted in Fig. 21 includ-
ing the present DNS of Res � 395. The wall asymptotic value
of Prt for Pr P 0:2 is certainly independent of y� and Prandtl
number irrespective of the Reynolds number.

On the other hand, Prt of the lower Prandtl number
(Pr� 0.025) depends signi®cantly upon the Reynolds number.
It moves towards the normal value for the larger Pr. Thus it is
indicated that the very high value of Prt for a low Prandtl
number ¯uid is caused by the e�ect of the low Reynolds
number. With the increase of the Reynolds number, the con-
vection transport contributes more dominantly compared to
the conduction e�ect.

The time scale ratio de®ned as

R � h0�2e
2keh

�27�

is a quantity often used to estimate the dissipation rate of the
temperature variance. Its wall asymptotic value is exactly equal
to the molecular Prandtl number. Fig. 22 shows the distribu-
tion of the time scale ratio for the Reynolds and Prandtl
numbers calculated. Its wall value is indeed equal to Pr. The
dependence upon the Reynolds number seems not so large for
all the Prandtl numbers calculated.

Fig. 21. Distribution of turbulent Prandtl number.

Fig. 22. Distribution of time scale ratio.

Fig. 20. Budget of wall-normal turbulent heat ¯ux Res � 395;�
Pr � 0:20�.

Fig. 19. Budget of wall-normal turbulent heat ¯ux Res � 180;�
Pr � 0:20�.
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Fig. 23. (a) High- and low-speed streaks and low-pressure regions Res � 180� � (u0� > 3:0: dark-gray, u0� < ÿ3:0: light-gray, p0� < ÿ3:0: white).

(b) High- and low-speed streaks and low-pressure regions Res � 395� � (u0� > 3:0: dark-gray, u0� < ÿ3:0: light-gray, p0� < ÿ3:0: white).
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Fig. 24. (a) High- and low-temperature regions and low-pressure regions Res � 180;Pr � 0:71� � (T 0� > 3:0: light-gray, T 0� < ÿ3:0: dark-gray,

p0� < ÿ3:0: white). (b) High- and low-temperature regions and low-pressure regions Res � 180;Pr � 0:025� � (T 0� > 0:22: light-gray, T 0� < ÿ0:22:

dark-gray, p0� < ÿ3:0: white).
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Fig. 25. (a) High- and low-temperature regions and low-pressure regions Res � 395;Pr � 0:71� � (T 0� > 3:0: light-gray, T 0� < ÿ3:0: dark-gray,

p0� < ÿ3:0: white). (b) High- and low-temperature regions and low-pressure regions Res � 395;Pr � 0:025� � (T 0� > 0:40: light-gray, T 0� < ÿ0:40:

dark-gray, p0� < ÿ3:0: white).
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3.8. Instantaneous velocity and temperature ®elds

The instantaneous velocity and thermal ®elds are visualized
to investigate the streaky and vortical structures with the use of
DNS data in Figs. 23±25. The visualized volume is one eighth
of the computational domain 3:2d� d� 1:6d� �, which corre-
sponds to 576� 180� 288 in terms of the wall unit �m=us� for
Res � 180 and 1264� 395� 632 for Res � 395. Note that the
¯uid ¯ows from the bottom left to the top right and that the
sign of the temperature ¯uctuation is inversed (T 0� � ÿh0�) to
meet an intuitive impression of the heating wall.

Instantaneous velocity ®elds are compared for Res � 180
and 395 in Fig. 23(a) and (b), where the contour surfaces of
high- and low-speed streaks and the low-pressure region are
visualized. The high- and low-speed streaks imply �u0� and
ÿu0�, where u0� represents the ¯uctuating part of the stream-
wise velocity.

It is well known that the low-pressure region corresponds to
the core of vortical structures as discussed by Robinson (1991).
When the Reynolds number increases, the structures become
highly intermittent in space. In case of a low Reynolds number,
only limited types of vortical structures are observed. On the
other hand, with the increase of the Reynolds number, various
shapes of the vortices appear. The well-known hairpin vortex
is not observed, but many single vortices are dominant. Some
of them look like the so-called banana vortices (Robinson,
1991).

The elongated streaky structure is obtained for both Ress.
The low-speed streaks are longer than the high-speed ones as
reported by Robinson (1991). The spanwise spacing of the low-
speed streaks is approximately 100 in the wall units, which is in
accordance with the experimental knowledge. In addition, the
low-speed streaks are generally elongated more than 1000 wall
units in the streamwise direction.

The temperature ®eld is visualized and shown for Pr� 0.71
and 0.025 with Res � 180 and 395 in Fig. 24(a) and (b) and
Fig. 25(a) and (b), where the contour surfaces of high- and
low-temperature regions and the low-pressure region are vi-
sualized. The high- and low-temperature regions imply �T 0�

and ÿT 0�, where T 0� represents the ¯uctuating part of the
temperature. Note that ®gures (a) and (b) in Figs. 24 and 25
illustrate the temperature contour based on the same velocity
®eld.

In case of Pr� 0.71, the velocity and the thermal streaky
structures show a strong resemblance with each other for both
of the Reynolds numbers. In case of a low Prandtl number of
Pr� 0.025, the thermal streaks are not so elongated in the
streamwise direction and their spanwise spacing seems to be
larger (Kasagi and Ohtsubo, 1993) compared with that of
Pr� 0.71 for both Res's. Moreover, the high- and low-tem-
perature regions exist away from the wall in accordance with
the peak position of the temperature ¯uctuations independent
of the Reynolds number. When the Reynolds number is large
as Res � 395, however, the streaks are more elongated than
those of Res � 180, because the convective e�ect becomes
more enhanced than the conductive one with the increase of
the Reynolds number.

4. Concluding remarks

The DNS of turbulent channel ¯ow with scalar transport
was performed for the Reynolds numbers of Res � 180 and
395. The molecular Prandtl numbers were 0.025, 0.2 and 0.71.
Turbulence statistics such as the temperature variance, the
turbulent heat ¯uxes, their budget terms, the turbulent Prandtl
number and the time scale ratio were obtained and the e�ects

of the Reynolds and Prandtl numbers were discussed. The
conclusions derived are as follows:
1. In the mean temperature pro®le, the logarithmic and wake

regions were better distinguished with the increase of Res.
2. The temperature variance and the streamwise and wall-nor-

mal heat ¯uxes were obtained and their expansion coe�-
cient in the wall vicinity was examined.

3. The near-wall value of the turbulent Prandtl number (Prt)
was found to be about unity independent of both Res and
Pr if Pr P 0:2. The e�ect of the Reynolds number on Prt

was more signi®cant for a lower molecular Prandtl number.
4. Instantaneous ¯ow and temperature ®elds were visualized

and their structures were compared for two di�erent Rey-
nolds numbers.
The present database will be open to public access. Detailed

information is given at http://muraibm.me.noda.sut.ac.jp/
e-page1.html.
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